S. L. ZABELL

SYMMETRY AND ITS DISCONTENTS

The following paper consists of two parts. In the first it is argued that
Bruno de Finetti’s theory of subjective probability provides a partial
resolution of Hume’s problem of induction, if that problem:is cast in a
certain way. De Finetti’s solution depends in a crucial way, however,
on a symmetry assumption — exchangeability — and in the second half
of the paper the broader question of the use of symmetry arguments in
g probability is analyzed. The problems and difficulties that can arise are
explicated through historical examples which illustrate how symmetry
arguments have played a important role in probability theory through-
out its development. In a concluding section the proper role of such
arguments is discussed.

1. THE DE FINETTI REPRESENTATION THEOREM

" Let X;, X;, X3, ... be an infinite sequence of 0,1-valued random
variables, which may be thought of as recording when an event occurs
in a sequence of repeated trials (e.g., tossing a coin, with 1 if heads, 0
if tails). The sequence is said to be exchangeable if all finite sequences
of the same length with the same number of ones have the same
probability, i.e., if for all positive integers » and permutations ¢ of

{17 2’ 37' L] n},
PlXi = e, X; = e,..., X, = ¢,] = P[X; = e5y, X>
= 60(2)’- B Xn = eo(n)]’
where e; denotes either a 0 or a 1. For example, when n = 3, this
means that

P[1,0,0] = P[0, 1, 0] = P[0, 0, 1] and
P[1,1,0] = P[1, 0, 1] = P[0, 1, 1).

(Note, however, that P[1, 0, 0] is not assumed to equal P[1, 1, 0]; in
general, these probabilities may be quite different.)
In 1931 the Italian probabilist Bruno de Finetti proved his famous
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DE FINETTI REPRESENTATION THEOREM. Let X, X, X,
... be an infinite exchangeable sequence of 0,1-valued random vari-
ables, and let S, = X, + X, + - -+ + X,, denote the number of ones in a
sequence of length n. Then it follows that:

1. the limiting frequency Z =: im,_,.(S,/n) exists with probability 1.
2. if W(A) =: P[Z € A] is the probability distribution of Z, then

P[S, = k] = j(i)p"(l — p)"*dw(p)
0

for all n and k.

This remarkable result has several important implications. First,
contrary to popular belief, subjectivists clearly believe in the existence
of infinite limiting relative frequencies — at least to the extent that they
are willing to talk about an (admittedly hypothetical) infinite sequence
of trials.2 The existence of such limiting frequencies follows as a purely
mathematical consequence of the assumption of exchangeability.’
When an extreme subjectivist such as de Finetti denies the existence of
objective chance or physical probability, what is really being disputed
is whether limiting frequencies are objective or physical properties.

There are several grounds for such a position, but all center around
the question of what “object” an objective probability is a property of.
Surely not the infinite sequence, for that is merely a convenient fiction
(Jeffrey 1977). Currently the most fashionable stance seems to be that
objective probabilities are a dispositional property ox propensity which
manifests itself in, and may be measured with ever-increasing accuracy
by, finite sequences of ever-increasing length (see, ¢.g., Kyburg 1974).

But again, a property of what? Not the coin, inasmuch as some
people can toss a so-called “fair”” coin so that it lands heads 60% of the
time or even more (provided the coin lands ona soft surface such as
sand rather than a hard surface where it can bounce). Some philo-
sophers attempt to evade this type of difficulty by ascribing propensities
to a chance set-up (e.g., Hacking 1965): in the case of coin-tossing, the
coin and the manner in which it is tossed. But if the coin were indeed
tossed in an identical manner on every trial, it would always come up
heads or always come up tails; it is precisely because the manner in
which the coin is tossed on each trial is not identical that the coin can
come up both ways. The suggested chance set-up is in fact nothing
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other than a sequence of objectively differing trials which we are sub-
jectively unable to distinguish between. At best, the infinite limiting
frequency is a property of an “object” enjoying both objective and
subjective features.

2. DE FINETTI VANQUISHES HUME

The most important philosophical consequence of the de Finetti repre-
sentation theorem is that it leads to a solution to Hume’s problem of
induction: why should one expect the future to resemble the past? In
the coin-tossing situation, this reduces to: in a long sequence of tosses,
if a coin comes up heads with a certain frequency, why are we justified
in believing that in future tosses of the same coin, it will again come up
heads (approximately) the same fraction of the time?

De Finetti’s answer to this question is remarkably simple. Given the
information that in n tosses a coin came up heads k times, such data is
incorporated into one’s probability function via

Bayes’s rule of conditioning: P[A|B] = P[A and B]/P[B].

If n is large and p* = k/n, then — except for certain highly opinion-
ated, eccentric, or downright kinky “priors” du — it is easy to prove
that the resulting posterior probability distribution on p will be highly
peaked about p*; that is, the resulting probability distribution for the
sequence of coin tosses looks approximately like (in a sense that can be
made mathematically precise) a sequence of independent and identi-
cally distributed Bernoulli trials with parameter p* (i.e., independent
tosses of a p* coin). By the weak law of large numbers it follows that,
with high probability, subsequent tosses of the coin will result in a
relative frequency of heads very close to p*.

Let us critically examine this argument. Mathematically it is, of
course, unassailable. It implicitly contains, however, several key
suppositions:

1. P is operationally defined in terms of betting odds.

2. P satisfies the axioms of mathematical probability.

3. P is modified upon the receipt of new information by Bayesian
conditioning.

4. P is assumed to be exchangeable.

In de Finetti’s system, degree of belief is quantified by the betting
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odds one assigns to an event. By a Dutch book or coherence argu-
ment, one deduces that these betting odds should be consistent with
the axioms of mathematical probability. Conditional probabilities are
initially defined in terms of conditional bets and Bayes’s rule of condi-
tioning is deduced as a consequence of coherence. The relevance of
conditional probabilities to inductive inference is the dynamic assump-
tion of Bayesianism (Hacking 1967): if one learns that B has occurred,
then one’s new probability assignment is P[A | B]. In general, however,
conditional probabilities can behave in very nonHumeian ways, and
(infinite) exchangeability is taken as describing the special class of
situations in which Humeian induction is appropriate.

This paper will largely concern itself with the validity of this last
assumption. Suffice it to say that, like Ramsey (1926), one may view
the subjectivist interpretation as simply capturing one of the many
possible meanings or useages of probability; that the Dutch book and
other derivations of the axioms may be regarded as plausibility argu-
ments (rather than normatively compelling); and that although a sub-
stantial literature has emerged in recent decades concerning the
limitations of Bayesian conditioning, the difficulties discussed and
limitations raised in that literature do not seem particularly applicable
to most of the situations typicaily envisaged in discussions of Hume’s
problem.

The assumption of exchangeability, however, seems more immedi-
ately vulnerable. Isn’t it essentially circular, in effect assuming what
one wishes to prove? Of course, in one sense this must obviously be
the case. All mathematics is essentially tautologous, and any implica-
tion is contained in its premises. Nevertheless, mathematics has its
uses. Formal logic and subjective probability are both theories of
consistency, enabling us to translate certain assumptions into others
more readily palatable. ’

What de Finetti’s argument really comes down to is this: if future
outcomes are viewed as exchangeable, i.e., no one pattern is viewed as
any more or less likely than any other (with the same number of
successes), then when an event occurs with a certain frequency in an
initial segment of the future, we must, if we are to be consistent, think
it likely that that event will occur with approximately the same fre-
quency in later trials. Conversely, if we do not accept this, it means
that we must have — prospectively — thought certain patterns more

likely than others. Which means that we must have possessed more
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information than is ordinarily posited in discussions of Humeian
induction.
And there the matter would appear to stand. Or does it?

3. THE INSIDIOUS ASSUMPTION OF SYMMETRY

Exchangeability is one of many instances of the use of symmetry
arguments to be found throughout the historical development of
mathematical probability and inductive logic. But while such argu-
ments often have a seductive attraction, they also often carry with
them “hidden baggage”: implications or consequences, sometimes far
from obvious, which later cast serious doubt on their validity. We will
discuss three historically important examples, all involving attempts
to justify induction by the use of probability theory, and all (in
effect) involving the appropriate choice of prior dp in the de Finetti
representation.

EXAMPLE 3.1: Bayes’s argument for the Bayes— Laplace prior.

Consider ““an event concerning the probability of which we absolutely
know nothing antecedently to any trials made concerning it” (Bayes
1764). Implicitly invoking a symmetry argument, Bayes argued that
“concerning such an event I have no reason to think that, in a certain
number of trials, it should rather happen any one possible number of
times than another,” i.e., that in a sequence of n trials one’s prob-
ability assignment for S,, the number of heads, should satisfy

Bayes’s Postulate: P[S, = k] = 1/(n + 1).

That is, the number of heads can assume any of the n + 1 values 0,
1, 2,..., n and, absent further information, all n + 1 values are
viewed as equally likely. In a famous Scholium, Bayes concluded that
if this were indeed the case, then the prior probability du(p) must be
the “flat” prior dp.*

Although Bayes’s exact reasoning at this point is somewhat unclear,
it can easily be made rigorous: Taking kK = 0 in the de Finetti repre-
sentation and using Bayes’s postulate, it follows that

1
[paute) = v + .
0
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The integral on the left-hand side is the n-th moment of du, so Bayes’s
assumption uniquely determines the moments of du. But since du is
concentrated on a compact set, it follows by a theorem of Hausdorff
that dp, if it exists, is in turn determined by its moments. That is, there
can be at most one probability measure du which satisfies Bayes’s
assumption P[S, = k] = 1/(n + 1). But the flat measure dp does satisfy
this integral equation, i.e.,

1

fp"dp = 1Un + 1),
0

hence dy must be dp.

Bayes’s argument is quite attractive. A modern-day subjectivist
might view Bayes’s assumption as a definition (possibly one of many)
of “complete ignorance” (rather than consider “‘complete ignorance”
to be an a priori meaningful concept), but would probably find Bayes’s
argument otherwise unobjectionable.

The argument in its original form, however, did not go uncriticized.
As Boole (1854, pp. 369—375) noted, rather than consider the events
[S, = k] to be equally likely, one could equally plausibly take all
sequences of a fixed length (or “constitutions”) to be so. Thus, for
n=3

P[000]

P[100] = P[010] = P[001] = P[110]
= P[101] = P[011] = P[111] = 1/8.

To many, this assignment seemed a far more natural way of quanti-
fying ignorance than Bayes’s.

Unfortunately, it contains a time-bomb with a very short fuse. As
Carnap (1950, p. 565) later noted (and Boole himself had already
remarked), this probability assignment corresponds to independent
trials, and thus remains unchanged when conditioned on the past, an
obviously unsatisfactory choice for modeling inductive inference, in-
asmuch as “past experience does not in this case affect future expecta-
tion” (Boole 1854, p. 372). :

In his Logical Foundations of Probability (1950), Carnap announced
that in a later volume, “a quantitative system of inductive logic” would
be constructed, based upon a function Carnap denoted c¢*. Carnap’s c*
function was, in effect, the one already proposed by Bayes. But
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Carnap grew uneasy with this unique choice, and in his monograph
The Continuum of Inductive Methods (1952), he advocated instead
the use of a one-parameter family containing ¢*. Unknown to Carnap,
however, he had been anticipated in this, almost a quarter of a century
earlier, by the English philosopher William Ernest Johnson.

EXAMPLE 3.2: W. E. Johnson’s sufficientness postulate.

In 1924 Johnson, a Cambridge logician, proposed a multinomial
generalization of Bayes’s postulate. Suppose there are ¢ = 2 categories
or types, and in n trials there are n, outcomes of the first type, n,
outcomes of the second type,. .., and n, outcomes of the #th type, so
that n = ny + n, + --- + n,. The sequence (ny, n,,. .., n,) is termed
an ordered t-partition of n. Bayes had considered the case t = 2, and
his postulate is equivalent to assuming that all ordered 2-partitions (k,
n — k) are equally likely. Now Johnson proposed as its generalization

Johnson’s combination postulate: Every ordered t-partition of n is
equally likely.

For example, if t = 3 and n = 4, then there are 15 possible ordered 3-
partitions of 4, viz.:

n ny ns
4 0 0
3 1 0
3 0 1
2 2 0
2 1 1
2 0 2
1 3 0
1 2 1
1 1 2
1 0 3
0 4 0
0 3 1
0 2 2
0 1 3
0 0 4

and each of these is assumed to be equally likely.

Johnson did not work with integral representations but, like Carnap,
with finite sequences. In so doing he introduced a second postulate, his
“permutation postulate.” This was none other the assumption of ex-
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changeability, thus anticipating de Finetti (1931) by almost a decade!
(If one labels the types or categories with the letters of a t-letter
alphabet, exchangeability here means that all words of the same length,
containing the same number of letters of each type, are equally likely).
Together, the combination and permutation postulates uniquely deter-
mine the probability of any specific finite sequence. For example, if
one considers the fifth partition in the table above, 4 =2 + 1 + 1, then
there are twelve sequences which give rise to such a partition, viz.

X, Xo X3 X4

L LI LI DN B B e e e e e
I T S R R N R
—_ DD e e ) e B e W N
_—m D) e D= N = W W

and each of these are thus assumed to have probability (1/15)(1/12) =
1/180. The resulting probability assignment on finite sequences is iden-
tical with Carnap’s c*.

Despite its mathematical elegance, Johnson’s ‘‘combination postu-
late” is obviously arbitrary, and Johnson was later led to substitute for
it another, more plausible one, his “sufficientness postulate.” This new
postulate assumes for all n

Johnson’s sufficientness postulate:
P[X,,+] = ]IXI = i], X2 = i2,..., Xn = l,,] - f(n], n).

That is, the conditional probability that the next outcome is of type j
depends only on the number of previous trials and the number of
previous outcomes of type j, but not on the frequencies of the other
types or the specific trials on which they occurred. If, for example ¢ =
3, n = 10, and n;, = 4, the postulate asserts that on trial 11 the
(conditional) probability of obtaining a 1 is the same for all sequences
containing four 1’s and 6 not —1’s, and that this conditional probability
does not depend on whether there were six 2’s and no 3’s, or five 2’s
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and one 3, and so on. (Note that the postulate implicitly assumes that
all finite sequences have positive probability, so that the conditional
probabilities are well-defined.)

Johnson’s sufficientness postulate makes what seems a minimal
assumption: absence of knowledge about different types is interpreted
to mean that information about the frequency of one type conveys no
information about the likelihood of other types occurring. It is there-
fore rather surprising that it follows from the postulate that the prob-
ability function P is uniquely determined up to a constant:

THEOREM. (Johnson 1932): If P satisfies the sufficientness postulate
and t = 3, then there exists a k > 0 such that

f(n;, n)y = {n; + k}/{n + tk}.

This is, of course, nothing other than Carnap’s “continuum of induc-
tive methods.”*

The de Finetti representation theorem can be generalized to a much
wider class of infinite sequences of random variables than those taking
on just two values (see, e.g., Hewitt and Savage 1955). In the multi-
nomial case now being discussed, the de Finetti representation states
that every exchangeable probability can be written as a mixture of
multinomial probabilities. Just as Bayes’s postulate implied that the
prior du in the de Finetti representation was the flat prior, Johnson’s
theorem implies that the mixing measure du in the de Finetti repre-
sentation is the symmetric Dirichlet prior

pt'ps™" ... pfTldpidp, .. dpi-y

a truly remarkable result, providing a subjectivistic justification for the
use of the mathematically attractive Dirichlet prior.®

Despite its surface plausibility, Johnson’s sufficientness postulate is
often too strong an assumption. While engaged in cryptanalytic work
for the British government at Bletchley Park during World War II, the
English logician Alan Turing realized that even if one lacks specific
knowledge about individual category types, the frequencies ny, na,. . .,
n, may contain relevant information about predictive probabilities,
namely the information contained in the frequencies of the frequencies.

Let a, = the number of frequencies »; equal to r; a, is called the
frequency of the frequency r. For example, if t = 4, n = 10, and one
observes the sequence 4241121442, thenny = 3, n, =3,n3=0,n4 = 4
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andap = 1,a, =0, a, =0, a3 = 2, a, = 1. (A convenient shorthand
for this is 011°2°3%4!.) Although it is far from obvious, the a, may be
used to estimate cell probabilities: see Good (1965, p. 68).”

EXAMPLE 3.3: Exchangeability and Partial Exchangeability.

Given the failure of such attempts, de Finetti’s program must be seen
as a further retreat from the program of attempting to provide a
unique, quantitative account of induction. Just as Johnson’s sufficient-
ness postulate broadened the class of inductive probabilities from that
generated by the Bayes—Laplace prior to the continuum generated by
the symmetric Dirichlet priors, so de Finetti extended the class of
possible inductive probabilities even further to include any exchange-
able probability assignment.

But what of the symmetry assumption of exchangeability? Even this
is not immune to criticism (as de Finetti himself recognized). Consider
the following sequence: 000101001010100010101001. ... Scrutiny of
the sequence reveals the interesting feature that although every 0 is
followed by a 0 or 1, every 1 is invariably followed by a 0. If this
feature were observed to persist over a long segment of the sequence
(or simply that 1’s were followed by 0’s with high frequency), then this
would seem relevant information that should be taken into account
when calculating conditional, predictive probabilities. Unfortunately,
exchangeable probabilities are useless for such purposes: if P is ex-
changeable, then the conditional probabilities

P Xpir = j| Xy = i1, Xo = g, .., Xn = 1]

depend solely on the number of 1’s, and not on their order within the
sequence. Thus, exchangeability, despite its plausibility, rules out a
natural form of inductive inference and can only be considered valid
when “order effects” are ruled out (as, for example, in coin-tossing).

An appropriate generalization of exchangeability that takes such
order information into account is the concept of Markov exchange-
ability: all sequences with the same initial letter and the same transi-
tion counts (f; =: number of transitions from state i to state j) are
assumed equally likely. Here too a de Finetti representation is possible
(Diaconis and Freedman 1980b, 1980c): now one mixes on the possible
transition matrices p;;.

Once one has come this far, of course, it is easy to recognize that
order effects of this type are merely one of many possible patterns that
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may be judged to provide useful information, each pattern requiring a
corresponding generalization of exchangeability to incorporate the in-
formation it provides. To deal with such situations, de Finetti intro-
duced in 1938 the notion of partial exchangeability (Diaconis and
Freedman 1980c). Although partial exchangeability is an active field of
current mathematical research still undergoing development (see, e.g.,
Diaconis and Freedman 1985), the general outline of the theory is
clear: to each pattern corresponds a statistic or symmetry, a repre-
sentation theorem, and a corresponding mode of inductive inference.

Thus, de Finetti’s resolution of Hume’s problem of induction is a
highly qualified one: it is a theory of coherence. Every person’s prob-
ability function will contain some symmetry involving past and future,
and coherence dictates that patterns observed in the past will be
expected to recur in the future.

Despite its highly qualified nature, the above analysis has an im-
portant payoff: it demonstrates that Hume’s problem is in fact ill-
posed; to ask “why should the future be expected to resemble the
past?” presupposes having already answered the question “how is the
future expected to resemble the past?” (It is essentially this point that
is behind Nelson Goodman’s “grue’” paradox.) It is a strength of the
subjectivist analysis that this point emerges as natural and obvious;
indeed, it is esséntially forced on one; and to the extent that one can
state precisely the ways in which the past and future are conjectured to
correspond, it gives a satisfactory solution to Hume’s problem.

The successive attempts of Bayes, Johnson, and de Finetti to solve
the problem of induction are marked by the invocation of progressively
weaker symmetry assumptions. Symmetry, however, has played not
only a key role in the the attempts to quantify induction, it has played
a central role in the birth and evolution of probability theory, more
central perhaps than sometime recognized. In the next three sections it
will be argued that the birth of mathematical probability marked a key
change in the way symmetry arguments were used; that the early
dependence on symmetry arguments to quantify probability, while
crucial to its mathematical development, blurred important epistemo-
logical distinctions; and that it was only with the challenging of precise-
ly those symmetry arguments in the 19th century that the conceptual
clarification of probability became possible.
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4. OU MALLON

The simplest and oldest of such arguments is the use of physical or
epistemic symmetry to identify a fundamental probability set or FPS,
i.e., a partition of the space of possible outcomes into equiprobable
alternatives. The recognition and use of such sets to compute numeri-
cal probabilities for complex events was a key step in the birth of
mathematical probability. Once the ability to calculate probabilities in
this simple case had been mastered, the outlines of the mathematical
theory discerned, and its practical utility recognized, all else followed.
Why were the mathematicians of the 17th century able to take this
step, while the Greeks, despite their mathematical prowess and pen-
chant for games of chance, were not? The crucial point to recognize is
that while for the pioneers of the modern theory the equipossible
elements of an FPS were equally likely, for the Greeks none were
possible.

This was because of what G. E. L. Owen has described as ““a very
Greek form of argument” (Owen 1966), a form of reasoning employed
by the Greeks that Leibniz was very fond of and which he called the
principle of sufficient reason: “for every contingent fact there is a
reason why the fact is so and not otherwise ...” (Broad 1975, p. 11).
In the words of Leucippus (the only complete sentence of his which
has come down to us), ‘“Nothing occurs at random, but everything for
a reason and by necessity” (Kirk and Raven 1957, p. 413). Two
famous examples will illustrate its use:

4.1. Anaximander and the position of the earth. Anaximander (c. 610—
540 B.C.), one of the early pre-Socratic Greek philosophers, believed
the Earth lay at the center of the universe. But unlike Thales before
him, who thought the Earth floated on water, and Anaximenes after,
who thought it floated on air, Anaximander thought the Earth was
unsupported and remained at the center for reasons of symmetry
(omoiotes; variously translated as “similarity,” “indifference,” “equili-
brium,” or “equiformity”’).® Unfortunately, the text of Anaximander
has not survived, and we are dependent on secondary, incomplete, and
contradictory later accounts for information about the precise nature
of his astronomical beliefs.” Our best source is perhaps Aristotle, who
reports:

L INT3
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There are some who say, like Anaximander among the ancients, that [the earth] stays
still because of its equilibrium. For it behoves that which is established at the center, and
is equally related to the extremes, not to be borne one whit more either up or down or to
the sides; and it is impossible for it to move simultaneously in opposite directions, so that
it stays fixed by necessity. {de Caelo 295 b10]

How closely this reproduces Anaximander’s own logic, the exact
meaning to be attached to omoiotes, indeed the precise nature of the
argument itself, is unclear. Nevertheless, the gist of the argument is
clearly an appeal to symmetry: for every direction there is an opposite;
since there is no more reason for the earth to move in one direction
than another, the proper conclusion is that it moves in neither.

Although Aristotle expressed scepticism about such reasoning, it was
fully accepted by Plato:

I am therefore persuaded that, in the first place, since the earth is round and in the
middle of the heaven, it has not need either of air of any other necessity in order not to
fall, but the similarity of the heaven to itself in every way and the equilibrium of the
carth suffice to hold it still. For an equilibrated thing set in the midst of something of the
same kind will have no reason to incline in one direction more than in another. But as its
relationship is symmetrical it will remain unswervingly at rest. [ Phaedo 108e—109a; c.f.
Timaeus 62d.12]

4.2. Parmenides and the creation of the universe. Parmenides gave a
similar argument to show that the universe had never been created:

And what need would have driven it on to grow, starting from nothing, at a later time
rather than an earlier? [Kirk and Raven 1957, p. 273]

Again this is essentially a symmetry argument: if the universe had
been created, it must have been at some specific time; inasmuch as
there is no more reason for it to have been created at any one time
than any other, all possible times are thereby ruled out. Obviously the
argument makes some presuppositions, but it had great appeal to
Leibniz and appears in his correspondence with Clarke. '’

It is, as G. E. L. Owen notes,

a very Greek pattern of argument.. .. Aristotle retailored the argument to rebut the
probability of motion in a vacuum; the Academy adapted it to show that, since no
physical sample of equality has more right to serve as a standard sample than any other,
the standard sample cannot be physical. And Leibniz found an excellent example in
Archimedes’s mechanics. ... [Owen 1966]

The Greek Pyrrhonian skeptics made systematic use of a similar
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device for destroying belief. Their goal was to achieve a state of
epoche, or suspension of judgement about statements concerning the
external world, which they believed would in turn lead to ataraxia, a
state of tranquility, . .. saying concerning each individual thing that it
no more [ou mallon] is than is not, or that it both is and is not, or that
it neither is nor is not.”!!

How can epoche be achieved? According to Sextus Empiricus (Out-
lines of Pyrrhonism 1.8):

Scepticism is an ability which sets up antitheses among appearances and judgments in
any way whatever: by scepticism, on account of the ‘equal weight’ which characterizes
opposing states of affairs and arguments, we arrive first at ‘suspension of judgment’, and
second at ‘freedom from disturbance’.

For example, knowledge of what is good is impossible, for what one
person thinks good, another may think bad, and

if we say that not all that anyone thinks good is good, we shall have to judge Fhe
different opinions; and this is impossible because of the equal validity of opposing
arguments. Therefore the good by nature is impossible.

It is important to understand the implications of asserting “ou
mallon.” One might interpret it in a positive sense: although certain
knowledge is ruled out, the information we possess is equally distri-
buted between two or more possibilities, and hence we have an equal
degree of belief in each. That this was not the skeptical position is clear
from a passage in Diogenes Laertius (Life of Pyrrho 9.74-76):

Thus by the expression “We determine nothing” is indicated their state of even balance;
which is similarly indicated by the other expressions, “Not more (one thing than an-
other),” “Every saying has its corresponding opposite,” and the like. But “N(')t more
(one thing than another)” can also be taken positively, indicating that two t.hmgs are
alike; for example, “The pirate is no more wicked than the liar.” But the Sceptlj:s meant
it not positively but negatively, as when, in refuting an argument, one says, “Neither had
more existence, Scylla or the Chimaera ..." Thus, as Timon says in the Pytho, the
statement [ou mallon] means just absence of all determination and withholding.of assent.
The other statement, “Every saying, etc.,” equally compels suspension of ]udgfnent;
when facts disagree, but the contradictory statements have exactly the same weight, ignor-
ance of the truth is the necessary consequence. [Emphasis added]

Pyrrhonian skepticism is an extreme position, and the later Aca-
demic skeptics developed a theory that combined skepticism about
certain knowledge with a description of rational decision based on
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probable knowledge.!? Under Carneades this theory included a scale
of the varying degrees of conviction conveyed by an impression, de-
pending on whether it was “credible,” “credible and consistent,” or
“credible, consistent, and tested.” Carneades’s theory amounts to an
early account of qualitative or comparative subjective probability, and
one might expect that a later skeptic would go the final step and
attempt to numerically measure or describe such degrees of conviction.
That this did not happen, it may be argued, was a consequence of the
ou mallon viewpoint. Witness Cicero’s statement: )

If a question be put to [the wise man] about duty or about a number of other matters in
which practice has made him an expert, he would not reply in the same way as he would
if questioned as to whether the number of the stars is even or odd, and say that he did
not know; for in things uncertain there is nothing probable [in incertis enim nihil est
probabile], but in things where there is probability the wise man will not be at a loss
either what to do or what to answer. [Cicero Academica 2.110]

A 19th century enthusiast of the principle of insufficient reason
would have little hesitation in assigning equal probabilities to the
parity of the number of stars; this passage thus strikingly illustrates a
chasm that had to be crossed before numerical probabilities could be
assigned. Cicero was familiar with a theory of probability, indeed
much of the Academica is devoted to a discussion of Academic prob-
abilism and is one of our major sources of information about it. But
for Cicero the probable was limited in its scope, limited in a way that
precluded its quantification. The FPS was the basic setting for the early
development of mathematical probability — but for Cicero it was a
setting in which the very notion of probability itself was inapplicable.

Support for this thesis may be found in the writings of Nicole
Oresme, the Renaissance astronomer and mathematician (ca. 1325—
1382). Oresme discussed Cicero’s example of the number of stars but,
writing only a few centuries before the earliest known probability
calculations, there is a clear difference:

The number of stars is even; the number of stars is odd. One of these statements is
necessary, the other impossible. However, we have doubts as to which is necessary, so
that we say of each that it is possible. . . . The number of stars is a cube. Now indeed, we
say that it is possible but not, however, probable or credible or likely [ron tamen prob-
abile aut opinabile aut verisimile], since such numbers are much fewer than others. . . .
The number of stars is not a cube. We say that it is possible, probable, and likely. . ..
[Oresme 1966, p. 385}

To some, the revolutionary content of this passage lies in its quasi-
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numerical assertion of the improbability of the number of stars being a
cube (due to the infrequency of cubic numbers). But its real novelty is
Oresme’s willingness to extend the realm of the probable. Having
made that transition, the frequency-based assertions of probability and
improbability he makes follow naturally.

Thus the key step in the birth of mathematical probability — the
identification of fundamental probability sets in order to quantify prob-
ability — while seemingly so natural, in fact contains a major pre-
supposition. The ancients used symmetry arguments to destroy belief,
where we use them to quantify it. This “conceptual revolution™ cul-
minated in the 20th century statistical resort to physical randomization
(e.g., in sampling, randomized clinical trials, and Monte Carlo simula-
tions): the paradox of deliberately imposing disorder to acquire in-
formation. The uses of randomization throughout the ancient and
medieval world, in contrast, although common and widespread (for
example, in games of chance and fair allocation) all depended, in one
way or another, solely on its property of loss of information.

But while the use of symmetry made the calculus of probabilities
possible, it also contained the seeds of future confusion.

5. CHANCE AND EQUIPOSSIBILITY

The birth of probability was not an untroubled one. Probabilities are
usualily classified into two major categories — epistemic and aleatory —
and a multitude of subcategories: propensities, frequencies, credibili-
ties, betting odds, and so on. In settings where an FPS exists, all of
these will usually have a common value, and the necessity of distin-
guishing among the different meanings is not a pressing one. But as the
initial successes of the “‘doctrine of chances” spurred on its application
to other spheres, this happy state of affairs ceased and the need for
distinctions became inevitable. .

Just what the proper domains of chance and probability were, how-
ever, remained unclear. For the calculus of probabilities was initially
the ““doctrine of chances,” and paradoxically, while the Greeks failed
to extend the realm of the probable to include fundamental probability
sets, in the early days of the doctrine of chances some thought the
notion of chance only applicable to such settings. A few examples will
suggest the difficulties and confusions that occurred.

1. Arbuthnot and the sex-ratio. In 1711, Dr. John Arbuthnot, a
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Scottish writer, physician to Queen Anne, and close friend of Swift
and Pope, published a short paper in the Philosophical Transactions of
the Royal Society, entitled ‘An Argument for Divine Providence Taken
From the Constant Regularity Observed in the Births of Both Sexes.’
Using statistics from the London Bills of Mortality for the preceding 82
years, Arbuthnot observed that male births had exceeded female births
in London for each year from 1629 to 1710. Noting that if male and
female births were equally likely, the probability of such an outcome
was extremely small (1 in 2%%), Arbuthnot rejected the hypothesis of
equilikehood, making in effect the earliest known statistical test of
significance. But Arbuthnot did not conclude that male and female
births possessed unequal probabilities. Instead, he rejected outright
the possibility that sex was due to chance, concluding that the excess
of males was due to the intervention of divine providence; that . .. it
is Art, not Chance, that governs” (Arbuthnot 1711, p. 189). )

In contrasting art with chance, Dr. Arbuthnot was merely displaying
his classical erudition; the dichotomy between techne (art) and tyche
(chance) being a commonplace of Greek philosophy.!*> What is new is
his belief that chance is only operative when probabilities are equilike-
ly; that otherwise some outside force must be acting, causing the im-
balance, and that one could no longer refer to chance. His specific line
of reasoning was quickly faulted by Nicholas Bernoulli: if sex is likened
to tossing a 35-sided die, with 18 faces labelled ““male,”” and 17 labelled
“female,” then Arbuthnot’s data are entirely consistent with the out-
come of chance.'* This response to Arbuthnot’s argument does not
dispute that chance is limited to fundamental probability sets; it simply
points out that more that one FPS is possible.

Arbuthnot’s juxtaposition of chance and cause, and his belief that
chances must be equal, is echoed in Hume. For Hume chance “pro-
perly speaking, is merely the negation of a cause”:

Since therefore an entire indifference is essential to chance, no one chance can possibly
be superior to another, otherwise than as it is compos’d of a superior number of equal
chances. For if we affirm that one chance can, after any other manner, be superior to
another, we must at the same time affirm, than there is something, which gives it
superiority, and determines the event rather to that side that the other: That is, in other
words, we must allow of a cause, and destroy the supposition of chance; which we had
before establish’d. A perfect and total indifference is essential to chance, and one total
indifference can never in itself be either superior or inferior to another. This truth is not
peculiar to my system, but is acknowledg’d by every one, that forms calculations con-
cerning chances. [Hume 1739, p. 125]
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Thus, for Hume, not merely the mathematical calculation of chances
but the very existence of chance itself is dependent on an “‘entire,”
“perfect,” and “total indifference” among the different possibilities.
Was this “acknowledg’d by every one?”” Examination of the works of
Bernoulli, DeMoivre, and Laplace does not entirely bare out this
claim. There the equality of chances appears as a mathematical device,
not a metaphysical necessity. Nevertheless, the contrast of chance with
“art,” “design,” or ‘“cause,” that “something, which gives it super-
iority,” is a recurrent theme. De Moivre suggests that ‘“‘we may ima-
gine Chance and Design to be, as it were, in Competition with each
other” (De Moivre 1756, p. v). “Chance” and “Design” here no
longer means the presence and absence of a stochastic element, but a
lack of uniformity in the probability distribution. Answering Nicholas
Bernoulli, De Moivre says yes, Arbuthnot’s birth data is consistent
with an 18:17 ratio, but “this Ratio once discovered, and manifestly
serving to a wise purpose, we conclude the Ratio itself, or if you will
the Form of the Die, to be an Effect of Intelligence and Design” (De
Moivre 1756, p. 253).

Uniformity in distribution was to be increasingly equated with ab-
sence of design or law, departure from uniformity with their presence.
A famous example is Michell’s argument in 1767 that optically double
or multiple stars were physically so. Michell calculated that the observed
clustering of stars in the heavens exceeded what could reasonably be
expected if the stars were distributed at random (i.e., uniformly) over
the celestial sphere, inferring “either design, or some general law” due
to “the greatness of the odds against things having been in the present
situation, if it was not owing to some such cause” (Michell 1767, p.
243). Michell’s argument was the focus of debate for a brief period
during the middle of the 19th century, a key issue being precisely this
equation of uniformity with absence of law.'*

The elements of a fundamental probability set-enjoy this status for
reasons which are both aleatory (i.e., physical or objective) and epis-
temic. The dichotomy between chance and design involves primarily
the aleatory aspect of the FPS. Throughout the 18th century, the
elements of an FPS were often defined in terms of equipossibility, a
terminology which, as Hacking notes (1975, Chapter 14), permitted a
blurring of the aleatory and epistemic aspects. The literature of the
period furnishes many instances of this duality. In the Ars Conjectandi,
for example, James Bernoulli refers to cases which are “equally possi-
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ble, that is to say, each can come about as easily as any other” (omnes
casus aeque possibiles esse, seu pari facilitate evenire posse). Laplace,
on the other hand, in his Essai philosophique, states the following
famous — and purely epistemic — criterion:

The theory of chance consists in reducing all the events of the same kind to a certain
number of cases equally possible, that is to say, to such as we may be equally undecided
about in regard to their existence. ... [Laplace 1952, p. 6]

If [the various cases] are not [equally possible], we will determine first ;heir respective
possibilities, whose exact appreciation is one of the most delicate points of the theory of
chance. [Laplace 1952, p. 11]

To assign equal probability to cases “such as we may be equally
undecided about” is the notorious principle of insufficient reason.
Although Laplace did not view it as controversial, many in the 19th
century did. What determines when cases are equally probable, possi-
ble, or likely? This epistemological ambiguity in the meaning and deter-
mination of an FPS led inevitably to controversy in its application.

2. D’Alembert and De Morgan. For example, what is the chance of
getting at least one head in two tosses of a fair coin? The standard
solution to this problem regards the four possible outcomes of tossing a
coin twice — HH, HT, TH, TT — as equally likely; since 3 out of these
four cases are favorable, the probability is 3/4. In 1754, however, the
French philosophe Jean Le Rond D’ Alembert (1717—1783) advanced a
different solution in his article ‘Croix ou pile’ in the Encyclopedie.
D’Alembert reasoned that one would stop tossing the coin as soon as
the desired head came up, so that there are really only three possible
outcomes — H, TH, TT — two of which are favorable, and hence the
probability is 2/3.

D’Alembert was far from being the first distinguished mathematician
to make an elementary error of this type, but he is perhaps unique in
the doggedness with which he subsequently defended his answer. In-
deed, this was only the first of several instances where D’Alembert was
led to disagree with the standard answers of the calculus of probabili-
ties, and “with this article, the renowned mathematician opened a
distinguished career of confusion over the theory of probabilities”
(Baker 1975, p. 172).'

D’Alembert’s criticisms were largely greeted with scorn and ridicule,
but seldom seriously discussed. Laplace, for example, remarks that
the probability would indeed be 2/3 “if we should consider with
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D’Alembert these three cases as equally possible ...” (1952, p. 12),
but he limits himself to giving the standard calculation without ex-
plaining why one set of equipossible cases is preferable to another.

The D’Alembert fallacy is possible because of the ambiguity in the
concept of equipossibility and the Laplacean definition of probability.
Laplace’s treatment of these questions, although not confused, fails to
come to grips with the fundamental issues. For one of the few serious
discussions of D’Alembert’s argument, one must turn to the writings of
Augustus De Morgan, Laplace’s most enthusiastic and influential
English expositor during the first half of the 19th century.

De Morgan argued that there are essentially two very distinct con-
siderations involved in the assessment of numerical probabilities. The
first of these is psychological: the measurement and comparison of
“the impressions made on our minds by different prospects,” as in a
judgment of equiprobability among alternatives. The second is mathe-
matical: the rational use of such measures or comparisons, as in the
computation of the probability of a complex event involving simpler,
equiprobable outcomes. The two questions differ in that “any given
answer to the first may admit of dispute,” while “‘there is no fear of
mathematics failing us in the second,” (De Morgan 1845, p. 395).

Armed with this distinction, De Morgan was able to analyze the
D’Alembert fallacy:

[Wlith regard to the objection of D’Alembert .. ., we must observe that if any individual
really feel himself certain, in spite of authority and principle, as here laid down, that the
preceding cases are equally probable, he is fully justified in adopting 2/3 instead of 3/4,
till he see reason to the contrary, which it is hundreds to one he would find, if he
continued playing for a stake throughout a whole morning, that is, accepting bets of two
to one that H would not come up once in two throws, instead of requiring three to
one. ... The individual just supposed, has applied correct mathematics to a manner in
which he feels obliged to view the subject, in which we think him wrong, but the error is
in the first of the two considerations [above], and not in the second. [De Morgan 1845,
p. 401] '

Despite its interest, De Morgan’s discussion is ultimately unsatis-
factory. The choice of an FPS is described as a psychological consi-
deration (which would suggest a subjectivist viewpoint), but the phrase
“in which we think him wrong’” suggests an objectivistic one. De Morgan
appeals to experience to justify the classical choice of FPS in the
D’Alembert problem, although probabilities for De Morgan were de-
grees of belief rather than empirical frequencies. The Laplacean view
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of probability was one of rational degree-of-belief, but his followers
were understandably reluctant to uncouple probability from frequen-
cies although, not surprisingly, unable to provide a logical description
of the choice of FPS.

De Morgan later returned to the D’Alembert example in his Formal
Logic (1847, pp. 199—200), and his brief discussion there is also
interesting:

[I]t may happen that the state of mind which is, is not the state of mind which should be.
D’Alembert believed that it was fwo to one that the first head which the throw of a
halfpenny was to give would occur before the third throw; a juster view of the mode of
applying the theory would have taught him it was three to one. But he believed it, and
thought he could show reason for his belief: to him the probability was two to one. But I
shall say, for all that, that the probability is three to one: meaning, that in the universal
opinion of those who examine the subject, the state of mind to which a person ought to
be abie to bring himself is to look three times as confidently upon the arrival as upon the
non-arrival.

When De Morgan says that, for D’ Alembert, “‘the probability was,”
the word probability is being used in a psychological or personalist
sense; when he says “‘the probability is,” the sense is logical or credi-
bilist. But to say that the probability is three to one because that is
“the universal opinion of those who examine the subject,” while cer-
tainly candid, is hardly a devastating refutation of D’Alembert.

De Morgan deserves considerable credit for distinguishing between
the psychological process of identifying a set of outcomes as equipossi-
ble, and the mathematical use of such a set to calculate probabilities,
as well as his (implicit) distinction between the subjective and objec-
tive senses of probability. Where he fails is in his account of why the
probability ““is”” three to one, and what empirical justification, if any,
such a statement requires. These, however, were basic- questions for
which the theory of his day had no answer.

In the later half of the 19th century, a serious attack was mounted
on epistemic probability and the principle of insufficient reason, and a
direct confrontation with such questions could no longer be avoided.

6. THE PRINCIPLE OF INSUFFICIENT REASON

The contributions of Laplace represent a turning point in the history of
probability. Before his work, the mathematical theory was (with the
exception of the limit theorems of Bernoulli and DeMoivre) relatively
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unsophisticated, in effect a subbranch of combinatorics; its serious
applications largely confined to games of chance and annuities. All this
changed with Laplace. Not only did he vastly enrich the mathematical
theory of the subject, both in the depth of its results and the range of
the technical tools it employed, he demonstrated it to be a powerful
instrument having a wide variety of applications in the physical and
social sciences. Central to his system however, was the use of the so-
called principle of insufficient reason.'’

The 19th century debate about the validity of the principle of insuffi-
cient reason involved, of necessity, much broader issues. Is probability
empirical or epistemic in nature? Can a probability be meaningfully
assigned to any event? Are all probabilities numerically quantifiable?
Beginning in the 1840’s, and continuing on into the 20th century, a
number of eminent British mathematicians, philosophers, and scien-
tists began to address such questions, including De Morgan, Ellis, Mill,
Forbes, Donkin, Boole, Venn, Jevons, MacColl, Edgeworth, Keynes,
Ramsey, Jeffreys, and Broad.

1. Donkin. A comprehensive discussion of this literature would be
beyond the scope of the present paper. Instead, we will confine our
attention primarily to the contributions of William Fishburn Donkin,
Savilian Professor of Astronomy in the University of Oxford from 1842
to 1869. Donkin wrote two papers on mathematical probability. One
of these concerned the justification for the method of least squares
and, although a valuable contribution to that subject, will not concern
us here. The other paper is modestly titled ‘On Certain Questions
Relating to the Theory of Probabilities’ (Donkin 1851). Donkin’s
paper, although little-known, is a lucid and careful attempt to clarify
the foundations of the subject. It was written in response to criticisms
by Forbes and others of Michell’s argument that stars that are optically
double are also physically so.

Donkin begins by stating that

It will, I suppose, be generally admitted, and has often been more or less explicitly
stated, that the subject matter of calculation in the mathematical theory of probabilities
is quantity of belief.

There were some dissenters to this view of probability at the time
Donkin wrote (e.g., Ellis 1844; Mill 1843), but they were few in
number and, due at least in part to the influence of De Morgan,
Laplace’s views held sway in England.'®
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Donkin’s philosophical view of probability may be summarized as
relative, logical, numerical, and consistent. Probability is relative in the
sense that it is never “inherent in the hypothesis to which it refers,”
but “always relative to a state of knowledge or ignorance.” Neverthe-
less, Donkin was not a subjectivist, because he also believed prob-
ability to be

absolute in the sense of not being relative to any individual mind; since, the same

information being presupposed, all minds ought to distribute their belief in the same
way. k

Ultimately, any such theory of logical probability must resort to the
principle of insufficient reason, and Donkin’s was no exception. In-
deed, if anything he saw its role as even more central to the theory
than did Laplace:

. the law which must always be made the foundation of the whole theory is the
following: — When several hypotheses are presented 1o our mind, which we believe to be
mutually exclusive and exhaustive, but about which we know nothing further, we distribute
our belief equally amonst them.

Although Boole’s detailed and influential criticism of the appeal to
insufficient reason was still several years off (Boole 1854, pp. 363—
375), Robert Leslie Ellis had already attacked its use on the grounds
that it “erected belief upon ignorance” (Ellis 1850, p. 325). Donkin’s
response was to stake out a limited claim for the theory:

[The force of] the argument commonly called the “‘sufficient reason™ ... in all cases
depends (as it seems to me) upon a previous assumption that an intelligible law exists
concerning the matter in question. If this assumption be admitted, and if it can be shown
that there is only one intelligible law, then that must be the actual law. ... A person who
should dispute the propriety of dividing our belief equally amongst hypotheses about
which we are equally ignorant, ought to be refuted by asking him to state which is to be
preferred. He must either admit the proposed law, or maintain that there is no law at all.

This observation would not have disarmed Ellis, Boole, or Venn,
who indeed denied the existence of any (determinate in the case of
Boole) law at all. But it did draw the line clearly. Its vulnerability, as
Boole realized, is simply that two or more sets of “mutually exclusive
and exhaustive” hypotheses may present themselves “about which we
know nothing further,” and which give rise to incompatible probability
assignments. Ramsey saw it as a virtue of the subjectivistic theory that
it eluded this dilemma by dispensing with the requirement of a unique
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law, admitting more than one probability assignment as possible
(Ramsey 1926, pp. 189—190).

But can one calculate probabilities no matter how complex the
setting or information available? Cournot, for example, had earlier
argued that there were three distinct categories of probability — objec-
tive, subjective, and philosophical, the last involving situations whose
complexity precluded mathematical measurement. '’

Donkin thought such arguments, essentially pragmatic in nature, not
to the point:

... T do not see on what ground it can be doubted that every definite state of belief
concerning a proposed hypothesis is in itself capable of being represented by a numerical
expression, however difficult or impracticable it may be to ascertain its actual value. . ..
[It is important to distinguish] the difficulty of ascertaining numbers in certain cases from
a supposed difficulty of expression by means of numbers. The former difficulty is real,
but merely relative to our knowledge and skill; the latter, if real, would be absolute, and
inherent in the subject matter, which I conceive not to be the case.

This was an important distinction. It expresses a tenet of faith of
logical probability: that all probabilities can, in principle be measured.
On a basic philosophical level, such theories have never really answer-
ed Ramsey’s simple criticism:

It is true that about some particular cases there is agreement, but these somehow
paradoxically are always immensely complicated; we all agree that the probability of a
coin coming down heads is 1/2, but we can none of us say exactly what is the evidence
which forms the other term for the probability relation about which we are then judging.
If, on the other hand, we take the simplest possible pairs of propositions such as ‘This is
red’, and “That is blue’, or “This is red’ and “That is red’, whose logical relations should
surely be easiest to see, no one, I think, pretends to be sure what is the probability
relation between them. [Ramsey 1926]

2. Boole. The first influential critic of the principle of insufficient
reason was Boole. He says of its derivation:

It has been said, that the principle involved in the above and in similar applications is
that of the equal distribution of our knowledge, or rather of our ignorance — the
assigning to different states of things of which we know nothing, and upon the very
ground that we know nothing, equal degrees of probability. I apprehend, however, that
this is an arbitrary method of procedure. [Boule 1854, p. 370]

As we have seen earlier (Section 3), to justify his criticism Boole
pointed to instances where it was possible to partition the sample space
of possible outcomes in different ways, each of which could plausibly
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be viewed as equipossible. Boole’s criticisms, unfortunately, became
more confusing as he attempted to clarify them. One might be for-
given, for example, for interpreting the passage just quoted as a clear
rejection of the principle. But Boole later wrote:

I take this opportunity of explaining a passage in the Laws of Thought, p. 370, relating
to certain applications of the principle. Valid objection lies not against the principle
itself, but against its application through arbitrary hypotheses, coupled with the assump-
tion that any result thus obtained is necessarily the true one. The application of the
principle employed in the text and founded upon the general theorem of development in
Logic, I hold to be not arbitrary. {Boole 1862]

Perusal of “the application of the principle employed in the text”
reveals it to be of the balls in an urn type, and what Boole now
appears to be defending might be called the principle of cogent reason:
if one possesses some information about the different alternatives, but
this information is equally distributed amongst them, then one is justi-
fied in assigning the alternatives equal probability.

Boole appeared to regard both probabilistic independence (which he
used extensively in his system) and uniformity of distribution as as-
sumptions of neutrality, in each case a via media between conflicting
extremes. There is a simple geometric sense in which this is true for
the assumption of uniformity: the uniform distzibution on n + 1 ele-
ments is the barycenter of the n-dimensional simplex of all probability
distributions. But once more the consequences of a symmetry assump-
tion lurk only partially visible. For depending on the use being made of
a probability distribution, symmetrical or uniform distributions can
often represent an extreme type of behavior. A good example of this
involves the “birthday paradox”: in a group of 23 or more people, the
odds exceed 1/2 that at least two persons share a birthday in common
(Feller 1968, p. 33). The calculation on which this statement is based
assumes that births occur uniformly throughout the year. Although
empirically false (see, e.g., Izenman and Zabell 1982), this does not
affect the validity of the conclusion: the probability of a birthday
“match” is minimized when the distribution of births is uniform (so
that the probability of a match will be even greater under the true
distribution).

It is difficult to assess Boole’s immediate impact on his contem-
poraries. As the distinguished author of The Laws of Thought, his
views on probability were certainly treated with respect. Nevertheless,
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they were highly idiosyncratic and confused in important respects.”
Given the complexity and unattractiveness of his own system, and
lacking the alternative philosophical foundation to the Laplacean edifice
that was later provided by Venn’s Logic of Chance, there was an
obvious reluctance to abandon the classical theory. Nevertheless, his
pointing to the fundamental ambiguity in the principle of insufficient
reason was a lasting contribution, remembered long after the rest of
his work on probability was forgotten.

Donkin represents what may be the highwater mark in the defense
of the Laplacean position; Boole was its first influential English critic.
After Boole and Venn the Laplaceans were on the defensive, first in
the philosophical, later in the statistical and scientific communities. In
response to the criticisms of Boole and his successors, many attempts
were made to state unambiguous formulations of the principle of
insufficient reason (e.g., by von Kries and Keynes), but their increa-
sing obscurity and complexity ensured their rejection.?!

The debate about the principle of insufficient reason and its con-
sequence, Laplace’s rule of succession, tapered off in the 1920s. This
was partly because Ramsey’s 1926 essay “Truth and Probability’ made
the principle superfluous as a foundation for epistemic probability.
When Fisher and Neyman produced statistical methodologies inde-
pendent of the Bayes—Laplace edifice, Bayesian statistics essentially
disappeared, only to be resuscitated by Savage nearly a quarter of a
century later with the publication in 1954 of his Foundations of
Statistics.

Savage’s conversion to subjectivism occurred after he became ac-
quainted with de Finetti’s work, and his writings were largely respon-
sible for bringing it into the mainstream of philosophical and statistical
thought. At the center of de Finetti’s system was the notion of ex-
changeability, and thus, initially exorcised, symmetry re-entered
epistemic probability.

7. WHAT IS TO BE DONE?

Symmetry arguments are tools of great power; therein lies not only
their utility and attraction, but also their potential treachery. When
they are invoked one may find, as did the sorcerer’s apprentice, that
the results somewhat exceed one’s expectations. Nevertheless, sym-
metry arguments enjoy an honored and permanent place in the arsenal
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of probability. They underlie the classical definition of probability that
held sway for over two centuries, are central to virtually all quantita-
tive theories of induction, appear as exchangeability assumptions in
subjectivist theories, and, in the guise of group-invariance, still play an
important role in modern theoretical statistics. Their use calls for
judicious caution rather than benign negiect.

The ambiguity underlying the proper role of symmetry assumptions
in the theory of probability stems in part from a corresponding ambi-
guity about the role the axioms play in the various axiomatic formula-
tions of probability. Do the axioms enjoy a privileged status vis-a-vis
their deducible consequences? Are they supposed to be intuitively
more evident or simpler in form? If the justification for the axioms is
their intuitive acceptability, what if some of their consequences violate
those intuitions? As in so many cases, one can identify two polar
positions on such issues, that of the left-wing dadaists and the right-
wing totalitarians.*

The left-wing dadaists not only demand that the axioms be grounded
in our intuitions, but that all deducible consequences of the axioms
must be intuitively acceptable as well. Intuitive acceptability was the
warrant for the axioms in the first place, and since there is no obvious
reason to favor certain intuitions over others, all must be satisfied. If
the consequences of a set of axioms violate our intuitions, then those
axioms must be abandoned and replaced. A leading exponent of this
position is L. Jonathan Cohen.??

The problem with such a position is that our intuitions, or at least
our untutored intuitions, are often mutually inconsistent and any con-
sistent theory will necessarily have to contradict some of them. During
the last two decades many psychologists, notably Daniel Kahneman
and Amos Tversky, have demonstrated that popular intuitions are
often inconsistent not merely with the standard axioms of probability,
but with essentially any possible axiomatization of probability; that
“people systematically violate principles of rational decision-making
when judging probabilities, making predictions, or otherwise attemp-
ting to cope with probabilistic tasks™ (Slovic, Fischhoff, and Lichten-
stein 1976).%

The right-wing totalitarians, on the other hand, believe that once an
axiom system is adopted, one must accept without question every
consequence that flows from it. One searches within one’s heart, dis-
covers the basic properties of belief and inference, christens them
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axioms, and then all else follows as logical consequence. Once the
axioms are brought to the attention of unbelievers, they must, like
Saul on the road to Damascus, be smitten by instantaneous conversion
or they stand convicted of irrational obtuseness. One representative of
this position is E. T. Jaynes, who dates his adherence to Bayesianism
to the time when he encountered Cox’s axiomatization of epistemic
probability, and who views the Shannon axioms for entropy as an
unanswerable foundation for his method of maximum entropy.

This position errs in giving the axioms too distinguished a position,
just as the previous position gave them too little. A set of axioms A,
together with T(A), the theorems deducible from it, forms a self-
consistent whole S. Let us say that any subset B c §, such that B U
T(B) = S, is an axiom-system for S. Mathematically speaking, ail
possible axiom-systems for S must be regarded as starting out on an
equal footing, and which axiom-system is ultimately chosen is essen-
tially a matter of preference, depending on considerations such as
simplicity, elegance, and intuitive acceptability.

The key point is that having tentatively adopted an axiom system,
one is not obligated to uncritically accept its consequences. In both
formal logic and subjective probability, the theory polices sets of be-
liefs by testing them for inconsistencies, but it does not dictate how
detected inconsistencies should be removed. If, as was the case with
some of the symmetry assumptions previously discussed, the con-
sequences are deemed unacceptable, then the assumption will be dis-
carded. If, on the other hand, the axioms seem compelling, as in
mathematical probability, then surprising consequences such as the
birthday paradox will be regarded as valuable correctives to our
erroneous, untutored intuitions; that is why the theory is useful. What
is or should be at play is a dynamic balance. As Nelson Goodman
argues:

Inferences are justified by their conformity to valid general tules, and . .. general rules
are justified by their conformity to valid inferences. But this circle is a virtuous one. The
point is that rules and particular inferences alike are justified by being brought into
agreement with each other. A rule is amended if it yields an inference we are unwilling to
accept; an inference is rejected if it violates a rule we are unwilling to amend. The process
of justification is the delicate one of making mutual adjustments between rules and
accepted inferences; and in the agreement achieved lies the only justification needed for
either [Goodman 1979, p. 64].

Symmetry assumptions must therefore be tested in terms of the

SYMMETRY AND ITS DISCONTENTS 183

particular inferences they give rise to. But — and this is the rub —
particular inferences can only be reasonably judged in terms of par-
ticular situations, whereas symmetry assumptions are often proposed
in abstract and theoretical settings devoid of concrete specifics.

Fundamentally at issue here are two very different approaches to the
formulation of a logic of probability. Extreme subjectivists adopt a
laissez faire approach to probability assignments, emphasizing the uni-
que aspects attending the case at hand. They do not deny the utility of
symmetry arguments, but, as Savage remarks, they “typically do not
find the contexts in which such agreement obtains sufficiently definable
to admit of expression in a postulate” (Savage 1954, p. 66). Such
arguments fall instead under the rubric of what 1. J. Good terms
“suggestions for using the theory, these suggestions belonging to the
technique rather than the theory” itself (Good 1952, p. 107).

Proponents of logical theories, in contrast, believe (at least in prin-
ciple) that if the evidence at one’s disposal is stated with sufficient
precision in a sufficiently rich language then agreement can be forced
via considerations of symmetry. At the level of ordinary language such
claims founder at the very outset on Ramsey’s simple objection (quoted
earlier in Section 6). Instead, simple model languages are introduced
and probabilities computed “given” statements descriptive of our state
of knowledge. Such formal systems do not escape subjectivism, they
enshrine it in the equiprobable partitions assumed.

Practical attempts to apply logical probability always seem to lead
back to discussions about events “concerning the probability of which
we absolutely know nothing antecedently to any trials made concern-
ing it.” Such attempts are ultimately divorced from reality, if only
because understanding the very meaning of the words employed in
describing an event already implies knowledge about it. Thus, it is not
surprising that the three leading 20th century proponents of logical
probability — Keynes, Jeffreys, and Carnap — all eventually recanted
to some extent or another.?”’” Carnap, for example, wrote

I think there need not be a controversy between the objectivist point of view and the
subjectivist or personalist point of view. Both have a legitimate place in the context of
our work, that is, the construction of a system of rules for determining probability values
with respect to possible evidence. At each step in the construction, a choice is to be
made; the choice is not completely free but is restricted by certain boundaries. Basically,
there is merely a difference in attitude or emphasis between the subjectivist tendency to
emphasize the existing freedom of choice, and the objectivist tendency to stress the
existence of limitations. [Carnap 1980, p. 119]
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This little-known, postumously published passage is a substantial
retreat from the hard-core credibilism of the Logical Foundations of
Probability. But it was inevitable. Symmetry arguments lie at the heart
of probability. But they are tools, not axioms, always to be applied
with care to specific instances rather than general propositions.

8. ENVOI

As a final illustration of the seductive nature of symmetry arguments in
probability, and as a challenge to the reader, I end with a little puzzle,
which 1 will call the exchange paradox:*®

A, B, and C play the following game. C acts as referee and
places an unspecified amount of money x in one envelope
and amount 2x in another envelope. One of the two envel-
opes is then handed to A, the other to B.

A opens his envelope and sees that there is $10 in it. He
then reasons as follows: “There is a 50—50 chance that B’s
envelope contains the lesser amount x (which would there-
fore be $5), and a 50—50 chance that B’s envelope contains
the greater amount 2x (which would therefore be $20). If 1
exchange envelopes, my expected holdings will be (1/2)$5 +
(1/2)$20 = $12.50, $2.50 in excess of my present holdings.
Therefore I should try to exchange envelopes.”

When A offers to exchange envelopes, B readily agrees,
since B has already reasoned in similar fashion.

It seems unreasonable that the exchange be favorable to both, yet it
appears hard to fault the logic of either. I will resist the temptation to
explain what I take to be the resolution of the paradox, other than
noting that all hinges on A’s apparently harmless symmetry assumption
that it is equally likely that B holds the envelope with the greater or
the lesser amount.?®
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NOTES

! The symbol (§) denotes the binomial coefficient n!/[k!(n — k)!]. Note that in the
theorem the sequence is assumed to be infinite; this requirement is sometimes over-
looked, although it is necessary for the general validity of the theorem.

2 There also exist finite forms of de Finetti’s theorem, which permit one to dispense with
the assumption that the number of trials is infinite. In such cases the integral mixture is
either replaced by a discrete sum or serves as an approximation to the exact probability;
see Diaconis and Freedman (1980a).

3 The existence of limiting frequencies for infinite exchangeable sequences follows from
their stationarity, and is an immediate consequence of the ergodic theorem; see, e.g.,
Breiman (1968, p. 118, Theorem 6.28).

4 For further discussion of Bayes’s scholium, see Murray (1930), Edwards (1978). For an
interesting account of how Bayes’s argument has often been misconstrued by statisticians
to fit their foundational preconceptions, see Stigler (1982).

5 It is an interesting historical footnote that Johnson’s derivation almost never appeared.
After the appearance of the third volume of his Logic in 1924, Johnson began work on a
fourth volume, to be devoted to probability. Unfortunately, Johnson suffered a stroke in
1927, and the projected work was never finished. Drafts of the first three chapters were
edited by R. B. Braithwaite and published posthumously as three separate papers in
Mind during 1932. Johnson’s mathematical derivation of the continuum of inductive
methods from the sufficientness postulate appeared as an appendix in the last of the
three. G. E. Moore, then editor of Mind, questioned whether so technical a result would
be of general interest to its readership, and it was only on the insistence of Braithwaite
that the appendix was published (Braithwaite 1982, personal communication).

S For further information about Johnson’s sufficientness postulate, and a complete
version of his proof, see Zabell (1982).

7 In brief, this is because even when one lacks information about specific, identifiable
categories, one may possess information about the vector of ordered probabilities. (For
example, one may know that a die is biased in favor of one face, but not know which
face it is.)

8 See generally Heath (1913, Chapter 4); Kahn (1960); Dicks (1970, Chapter 3). For the
original Greek texts of the fragments of Anaximander, with accompanying English
translation, commentary, and discussion, see Kirk and Raven (1957, Chapter 3).

® Perhaps the most pessimistic assessment of the state of our information is that of Dicks
(1970, pp. 45—46).

19 1n its general form (neither of two exactly symmetrical alternatives will occur), it also
crops up from time to time in 19th century philosophical discussions of probability. Two
examples are (1) Bolzano: ... if we are to have a rational expectation that a certain
result will take place, for example that Caius will draw a certain ball from several balls in
an urn, then we must presuppose that the relation between these balls and Caius is such
that the reasons for drawing that particular ball are not exactly like the reasons for
drawing some other ball, since otherwise he wouldn’t draw any” (Bolzano 1837, p. 245
of 1972 edition.); (2) Cook Wilson: *“... if a number of cases, mutually exclusive ...,
were in the nature of things equally possible, not one of them could happen. If the claim
of any one of them in reality were satisfied, so must the claim of any other, since these
claims are equal, and therefore if one happens all must, but by hypothesis if one happens
no other can; thus the only possible alternative is that none of them can happen”
(Wilson 1900, p. 155).
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1 Aristocles, quoted in Long (1974, p. 81); c.f. Diogenes Laertius, Life of Pyrrho 9.107;
Sextus Empiricus, Outlines of Pyrrhonism 1.8. For general information on the Pyrrhonian
skeptics, see Stough (1969, Chapter 2); Long (1974, pp. 75—88). The ou mallon argu-
ment itself is discussed in some detail by DeLacy (1958).

12 Gee generally Stough (1969, pp. 50—66); Long (1974, pp. 95-99).

13 See, e.g., Plato, Laws 709, 889 b—d; Aristotle, Metaphysics 1070ab. (Strictly speak-
ing, Aristotle distinguishes between automaton (chance, spontaneity) and tyche (luck,
fortune).

14 For further discussion of Arbuthnot, see Hacking (1965, pp. 75—77); Hacking (1975,
Chapter 18); Pearson (1978, pp. 127—133, 161—162).

1S For a recent and very readable account of the dispute, see Gower (1982). Similar
issues arose in later discussions of geometrical probability: what does it mean to select
points (or lines, or triangles) at random? Venn (1888, pp. 100—101), reporting one such
discussion, quotes the English mathematician Crofton as asserting that “at random” has
“a very clear and definite meaning; one which cannot be better conveyed than by Mr
Wilson’s definition, ‘according to no law’....” “Mr. Crofton holds,” Venn continues,
“that any kind of unequal distribution {of points in a plane] would imply law,” to which
Venn retorts, “Surely if they tend to become equally dense this is just as much a case of
regularity or law.” Where James Bernoulli had attempted to subsume the probability of
causes under that of chances (to use Hume’s terminology), the frequentist Venn sub-
sumes the probability of chances under that of causes.

16 See generally Todhunter (1865, Chapter 13); Baker (1975, pp. 171—-180); Pearson
(1978, Chapter 12). For a recent but unconvincing attempt at rehabilitation, see Daston
(1979).

V7 Laplace nowhere actually uses this term, which is of later origin. Writing in 1862,
Boole refers to “that principle, more easily conceived than explained, which has been
differently expressed as the ‘principie of non-sufficient reason’, the principle of equal
distribution of knowledge or ignorance” [footnote omitted], and the ‘principle of order’,”
(Boole 1862).

18 When Donkin wrote his paper the first frequentist theories (apart from occasional
allusions in the earlier literature) were less than a decade old. As Porter (1986, p. 77)
notes, “in 1842 and 1843, four writers from three countries independently proposed
interpretations of probability that were fundamentally frequentist in character.” These
four — Jakob Friedrick Fries in Germany, Antoine Augustin Cournot in France, and
Richard Leslie Ellis and John Stuart Mill in England — were the harbingers of an
increasingly empirical approach to probability. (Curiously, after correspondence with the
astronomer John Herschel, Mill actually withdrew his objections to Laplace’s epistemic
view of probability from the second (1846) and later editions of his Logic; see Strong
(1978).) Despite this early efflorescence, the frequency theory did not begin to gain
widespread acceptance until its careful elaboration, nearly a quarter of a century later, in
John Venn’s Logic of Chance (Ist ed. 1866). For discussion of the work of Fries,
Cournot, Ellis, and Mill, see Porter (1986, pp. 77—88), Stigler (1986, pp. 195—200); for
discussion of Venn’s Logic, Salmon (1980).

19 The argument that some probabilitics are “philosophical” (i.e., inherently non-
numerical) was often made by those who thought the mathematical theory had out-
reached its grasp. Strong (1976, p. 207, n. 5) notes the use of the distinction in K. H.
Frémmichen’s 1773 work, Uber die Lehre des Wahrscheinlich, “the earliest ... that I
have been able definitely to date,” as well the better known treatment in Kant’s Logik of
1781. See von Wright (1957, p. 217, n. 9) for further references to the 19th century
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literature. In addition to the names given there, one could add those of the Scottish
philosopher Dugald Stewart and the English jurists Starkie, Wills, and Best. For the
related criticisms of the French positivists Destutt de Tracy, Poinsot, and Comte, see
Porter (1986, p. 155) and Stigler (1986, pp. 194—195).

** Many of these are touched on by Keynes in scattered passages throughout his Treatise
on Probability (1921). Hailperin (1976) is a useful attempt at rational reconstruction. For
discussion of Boole’s criticism of the Laplace/De Morgan analysis of inductive reasoning
in terms of probability, see the excellent article of Strong (1976).

2l See generally Keynes (1921, Chapters 4 and 6).

22 There is obviously an element of intentional caricature in what follows, although
perhaps less than might be supposed. ’

.23 *... ordinary human reasoning ... cannot be held to be faultily programmed: it sets
its own standards’ (Cohen 1981, p. 317).

2% Much of this work is summarized in Kahneman, Slovic, and Tversky (1982).

> Although not readily available, Jaynes’s early Socony Mobil Oil lecture notes (Jaynes
1958) provide a vigorous and very readable exposition of his viewpoint.

26 There are some notable exceptions to this. W. E. Johnson, for example, in discussing
his sufficientness postulate, argued that:

“the postulate adopted in a controversial kind of theorem cannot be generalized to cover
all sorts of working problems; so it is the logician’s business, having once formulated a
specific postulate, to indicate very carefully the factual and epistemic conditions under
which it has practical value.” (Johnson 1932, pp. 418—419)

7 For Keynes’s recantation, see Good (1965, p. 7). In the third edition of his book
Scientific Inference, Jeffreys suggests that in controversial cases the appropriate choice of
reference prior could be decided by an international panel of experts. Such a position is
QI}Viously incompatibie with credibilism as usually understood. For Carnap, see the text
infra.

1 first heard the paradox from Steve Budrys of the Odesta Corporation, on an
otherwise unmemorable night at the now defunct Chessmates in Evanston. It does not
originate with him, but I have been unable to trace its ultimate source.

Note added in proof: Persi Diaconis and Martin Gardner inform me that the paradox
is apparently due to the French mathematician Maurice Kraitchik; see Maurice Krait-
chik, Mathematical Recreations, 2nd ed. (New York: Dover, 1953), pp. 133—134. In
Kraitchik’s version two persons compare their neckties, the person with the less valuable
necktie to receive both.

2 T thank Persi Diacanis, David Malament and Brian Skyrms for helpful comments.
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HAIM GAIFMAN

A THEORY OF HIGHER ORDER PROBABILITIES!

INTRODUCTION

The assignment of probabilities is the most established way of measur-
ing uncertainties on a quantitative scale. In the framework of subjec-
tive probability, the probabilities are interpreted as someone’s (the
agent’s) degrees of belief. Since justified belief amounts to knowledge,
the assignment of probabilities, in as much as it can be justified, ex-
presses knowledge. Indeed, knowledge of probabilities appears to be
the basic kind of knowledge that is provided by the experimental
sciences today.

This is knowledge of a partial, or incomplete, nature, but not in the
usual sense of “partial”. Usually we mean by “partial knowledge”
knowledge of some, but not all, of the facts. But knowing that a given
coin is unbiased does not enable one to deduce any non-tautological
fact concerning the results of the next, say fifty tosses; every sequence
of outcomes is possible. And yet it constitutes very valuable knowledge
about these very same outcomes.

What is the objective content of this knowledge? What kind of fact
is the fact that the true probability of “heads’ is 0.5, i.e., that the coin
is unbiased? I have argued elsewhere, (1983), that rather than to
classify subjective and objective probabilities as two different kinds we
should do better to regard them as two extremes of a spectrum. In that
paper 1 considered the following question: Assuming a probability
distribution which represents someone’s beliefs, what is it that makes
this distribution “objective””? As a way of answering it I pointed out
and analyzed two aspects of objectiveness: inner stability and success.
To go into these points here would make for too long a digression. So I
shall start by taking it for granted that certain probability assignments
are regarded by us as expressing fuller knowledge than other assign-
ments. We also think that these “better’” assignments are more likely
to succeed, or to be in tune with the actual world. I shall not elaborate
here on what constitutes ““being in tune with the world”. Let me only
point out that the notion can be given precise meaning, as is illustrated
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